

CONVOLUTION QUADRATURE METHODS FOR TIME-DOMAIN SCATTERING FROM UNBOUNDED PENETRABLE INTERFACES

Ignacio Labarca

Alumno Magíster, Instituto de Ingeniería Matemática y Computacional

© PONTIFICIA Universidad Católica de chile

Abstract

We present a class of boundary integral equation methods for the numerical solution of acoustic electromagnetic time-domain and scattering problems in the presence of unbounded penetrable interfaces in two-spatial dimensions. The methodology relies proposed on Convolution Quadrature (CQ) methods in conjunction with the recently introduced Windowed Green Function (WGF) method. As in standard time-domain scattering from bounded obstacles, a CQ method of the user's choice is utilized to transform the problem into a finite number of (complex) frequency-domain problems posed on the domains involving penetrable unbounded interfaces. Each one of the frequency-domain transmission problems is then formulated as a second-kind integral equation that is effectively reduced to a bounded interface by means of the WGF method-which introduces errors that decrease super-algebraically fast as the window size increases. The resulting windowed integral equations can then be solved by means of any (accelerated or unaccelerated) off-the-shelf Helmholtz boundary integral equation solver capable of handling complex wavenumbers with large imaginary part. A high-order Nystrom method based on Alpert quadrature rules is utilized here. A variety of numerical examples including wave propagation in open waveguides as well as scattering from multiply layered media, demonstrate the capabilities of the proposed approach.

SEMINARIO

20 DE MARZO 14 HRS AUDITORIO SAN AGUSTÍN CAMPUS SAN JOAQUÍN UC

